New Hampshire Volunteer Lake Assessment Program

2002 Interim Report for Pine River Pond Wakefield

NHDES Water Division Watershed Management Bureau 6 Hazen Drive Concord, NH 03301

OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **PINE RIVER POND**, the program coordinators recommend the following actions.

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the pond has been monitored through the program.

Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a and are naturally found in lake ecosystems, the chlorophyll-a concentration found in the water gives an estimation of the concentration of algae or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 ug/L.

Similar to the summer of 2001, the summer of 2002 was filled with many warm and sunny days and there was a lower than normal amount of rainfall during the latter-half of the summer. The combination of these factors resulted in relatively warm surface waters throughout the state. The lack of fresh water to the lakes/ponds reduced the rate of flushing which may have resulted in water stagnation. Due to these conditions, many lakes and ponds experienced increased algae growth, including filamentous green algae (the billowy clouds of green algae typically seen floating near shore), and some lakes/ponds experienced nuisance cyanobacteria (blue-green algae) blooms.

The historical data (the bottom graph) show that the 2002 chlorophyll-a mean is **less than** the state mean. Overall, visual inspection of the historical data trend line (the bottom graph) shows **a variable** in-lake chlorophyll-a trend, meaning that the concentration has **fluctuated** since monitoring began.

For the 2003 annual report, since there will have been at least 10 consecutive years of sample collection, we will conduct a statistical analysis of the data. This will allow us to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began.

While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Therefore, algal concentrations may increase when there is an increase in nonpoint sources of nutrient loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). It is important to continually educate residents about how activities within the watershed can affect phosphorus loading and lake quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for pond transparency. Table 3 lists the maximum, minimum and mean transparency data for each sampling season that the pond has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters.

Two different weather related patterns occurred this past spring and summer that influenced lake quality during the summer season.

In late May and early June of 2002, numerous rainstorms occurred. Stormwater runoff associated with these rainstorms may have increased phosphorus loading, and the amount of soil particles washed into waterbodies throughout the state. Some lakes and ponds experienced lower than typical transparency readings during late May and early June.

However, similar to the 2001 sampling season, the lower than average amount of rainfall and the warmer temperatures during the latter-half of the summer resulted in a few lakes/ponds reporting their best-ever Secchi-disk readings in July and August (a time when we often observe reduced clarity due to increased algal growth)!

The current year data (the top graph) show that the transparency increased as the sampling season progressed. The historical data (the

bottom graph) show that the 2002 mean transparency is **greater than** the state mean. Overall, visual inspection of the historical data trend line (the bottom graph) shows **a variable** trend for in-lake transparency, meaning that the transparency has **generally fluctuated** since monitoring began.

Again, for the 2003 annual report, we will conduct a statistical analysis of the data. This will allow us to objectively determine if there has been a significant change in the annual mean transparency since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into the pond and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants are available from NHDES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

It is interesting to note that throughout this summer the total phosphorus concentration in the epilimnion (upper layer) **gradually decreased**, while the total phosphorus concentration in the hypolimnion (lower layer) **gradually increased**. It is also important to note that the chlorophyll-a concentration in August and September was **much less than** the concentrations in June and July. This trend may be caused phosphorus contained in the epilimnion at the start of the summer settling to the hypolimnion as the summer progressed. Specifically, as the summer progressed, it is likely that the algal cells near the surface of the pond decomposed and settled to the bottom of the pond, which would cause an increase in the phosphorus concentration near the bottom of the pond.

The historical data for the epilimnion (upper layer) show that the 2002 total phosphorus mean is **less than** the state median. Overall, visual inspection of the historical data trend line for the epilimnion shows **a relatively stable** total phosphorus trend, which means that the concentration has **remained approximately the same and less than the state median** (with the exception of the 1993 sampling season) in the epilimnion since monitoring began.

The historical data for the hypolimnion (lower layer) show that the 2002 total phosphorus mean is **much greater than** the state median. Overall, visual inspection of the historical data trend line for the hypolimnion shows **a variable** total phosphorus trend, which means that the concentration has **fluctuated** in the hypolimnion since monitoring began.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. If you would like to educate watershed residents about how they can help to reduce phosphorus loading into the pond, please contact the VLAP Coordinator.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Small amounts of the cyanobacterium **Anabaena and Chroococus** were observed in the plankton sample this season. **If present in large amounts, these species can be toxic to livestock, wildlife, pets, and humans** (Refer to page 14 of the "Biological Monitoring Parameters" section of this report for a more detailed explanation). Cyanobacteria can reach nuisance levels when excessive nutrients and favorable environmental conditions occur. As with the summer of 2001, we observed that some lakes and ponds had cyanobacteria present during the 2002 summer season, likely due to the many warm and sunny days that occurred this summer, which may have accelerated algal and bacterial growth. In addition, the lower than normal amount of rainfall during the latter half of the summer, meant that the slow flushing rates resulted in less phosphorus exiting the lake outlet and more phosphorus being available for plankton growth.

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading into the pond by eliminating fertilizer use on lawns, keeping the pond shoreline natural, revegetating cleared areas within the watershed, and properly

maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface and bloom. Wind and currents tend to "pile" cyanobacteria into "surface scums" that accumulate in one section of the pond. If a fall bloom occurs, please contact the VLAP Coordinator.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is 6.5, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historic epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the pond. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. For a more detailed explanation, please refer to page 16 of the "Chemical Monitoring Parameters" section of this report.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to page 17 of the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

> Table 9 and 10: Dissolved Oxygen and Temperature Profile Data

Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) for the 2002 sampling season. The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at the deep spot of the pond. As stratified ponds age, oxygen becomes **depleted** in the hypolimnion (the lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological breakdown of organic matter (i.e.; biological organisms use oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. When oxygen levels are depleted to less than 1 mg/L in the hypolimnion the phosphorus that is normally bound up in the sediment may be re-released into the water column. The high concentration of oxygen in the hypolimnion is a sign of the pond's overall good health.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to page 19 of the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity of the hypolimnion (lower layer) sample was elevated on the **August 5**th sampling event. This suggests that the pond bottom may have been disturbed by the anchor or by the Kemmerer Bottle while sampling. When the pond bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting the hypolimnion sample, please check to make sure that there is no sediment.

> Table 12: Bacteria (E.coli)

Table 12 lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestines in humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured, and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful pathogens may also be present. Please consult page 20 of the "Other Monitoring Parameters section of the report for the current standards for *E. coli* in surface waters. If residents are concerned about sources of *E.coli* such as septic system impacts, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high or after rain events.

During mid-July of 2002, routine VLAP sampling revealed an abnormally high bacteria (E.coli) concentration in James Young Brook. This alerted the volunteer monitors, the VLAP Coordinator, and the Limnology Center Director that there might be a problem upstream that could affect the lake. In late-July, the volunteer monitors took E.coli samples along the stream using the bracketing technique to better pinpoint the potential sources of elevated *E.coli*. Specifically, samples were taken upstream and downstream of at least two small farms where livestock was observed in close proximity to the stream. The results from the late-July round of sampling indicated elevated E.coli levels in a few locations along the stream, however, the results were not conclusive. Since it appeared that livestock might be contributing to the elevated E.coli levels in the stream, the Limnology Center Director referred a complaint to the New Hampshire Department of Agriculture.

In mid-August 2002, a Department of Agriculture Inspector met with one of the volunteer monitors to investigate the stream. Specifically, at least two properties along the stream where the close proximity of livestock to the stream might be contributing to the elevated *E.coli* levels were inspected. The law, under RSA 431:33-35, requires that the Department of Agriculture make an inspection of such a property when a complaint is filed in order to determine if Best Management Practices (BMPs) are being utilized on the property, and, when necessary, to make recommendations for the implementation of BMPs. BMPs are management practices that help to achieve the beneficial use of animal wastes and its nutrients while minimizing its possible impact to land, water and humans.

During the site inspections, the Agricultural Inspector met with the landowners and made verbal recommendations for better managing manure and livestock activities around the stream. Specifically, recommendations were made on keeping livestock away from the stream by prohibiting access, keeping manure out of the stream by periodic cleaning and establishing a manure storage area located

away from the stream, and minimizing the amount of stormwater runoff entering the stream by establishing vegetative buffers along the stream banks. In addition, the Agricultural Inspector gave each landowner information pertaining to the Agricultural Nutrient Grant Program, a program that could assist the landowners to comply with the BMP recommendations. The landowners were informed that they needed to implement the recommended BMPs within 10 days or submit a plan of compliance to the Department of Agriculture detailing when the recommendations will be implemented. After the site inspections, a follow-up letter was sent to each landowner to document the recommendations.

In September and October of 2002, staff from the DES Biology Section sampled along the stream after two rainstorms in an effort to further pinpoint the sources of elevated *E.coli*. The *E.coli* results for the two stormwater sampling events were very high in certain locations, likely due to the prior accumulation of manure in the soil along the stream banks and in the surrounding wetland systems.

The Department of Agriculture will send out an inspector in the spring of 2003 to ensure that the recommendations for both properties have been followed and that grant funds have been used as agreed to. In addition, during the 2003 VLAP sampling season, the DES Biology Section will continue to work with the Pine River Pond volunteer monitors to conduct stormwater sampling and bracket sampling along stream to determine if additional management activities are necessary.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual pond and tributary conditions.

Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and

there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did a **good** job when collecting samples this season! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures when collecting and submitting samples to the laboratory. However, the laboratory did identify a few aspects of sample collection that the volunteer monitors could improve upon. They are as follows:

- > Sample Holding Time: Please remember to return samples to the laboratory within 24 hours of sample collection. This will ensure that samples do not degrade before they are analyzed. If you plan to sample on the weekend, please sample on Sunday, preferably in the afternoon, and return samples to the lab first thing on Monday morning to ensure that samples can be analyzed within 24 hours. *E.coli* samples that are more than 30 hours old will not be accepted by the laboratory for analysis.
- > **Tributary Sampling:** Sediment/debris was observed in the white sample bottle for **Young's Brook** on the **August 5th** sampling event. Please do not sample tributaries that are too shallow to collect a "clean" sample and do not sample the stream if the stream bottom has been disturbed. You may need to move upstream or downstream to collect a "clean" sample. If you disturb the stream bottom while sampling, please rinse out the bottle and move to an upstream location and sample in an undisturbed area.
- > Sample Bottles: The chlorophyll-a sample for the September 9th sampling event was not collected in the appropriate bottle. Specifically, the chlorophyll sample should be collected in the big brown light-proof bottle to limit the algae's ability to photosynthesize and produce more chlorophyll during the time period after sample collection and prior to analysis. The chlorophyll-a sample was cooled and brought to the lab only 3 hours after collection; therefore the sample was not rejected.

USEFUL RESOURCES

Changes to the Comprehensive Shoreland Protection Act: 2001 Legislative Session, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/sp/sp-8.htm

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm

The Lake Pocket Book. Prepared by The Terrene Institute, 2000. (internet: www.terrene.org, phone 800-726-4853)

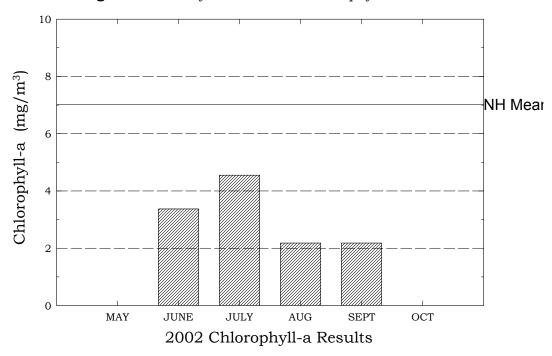
Organizing Lake Users: A Practical Guide. Written by Gretchen Flock, Judith Taggart, and Harvey Olem. Copies are available form the Terrene Institute (internet: www.terrene.org, phone 800-726-4853)

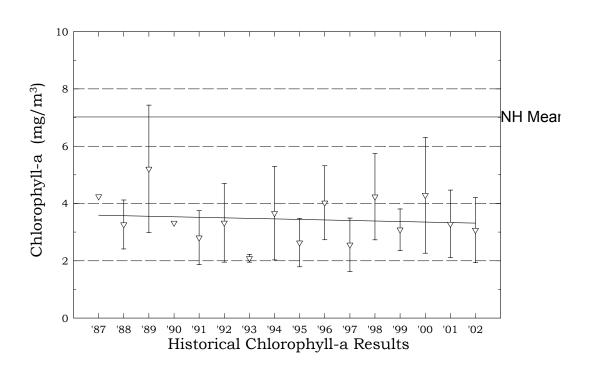
Proper Lawn Care in the Protected Shoreland: The Comprehensive Shoreland Protection Act, WD-SP-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-2.htm

Sand Dumping - Beach Construction, WD-BB-15, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-15.htm

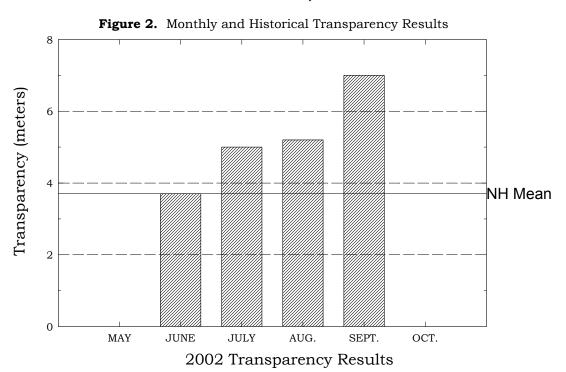
Swimmers Itch, WD-BB-2, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-2.htm

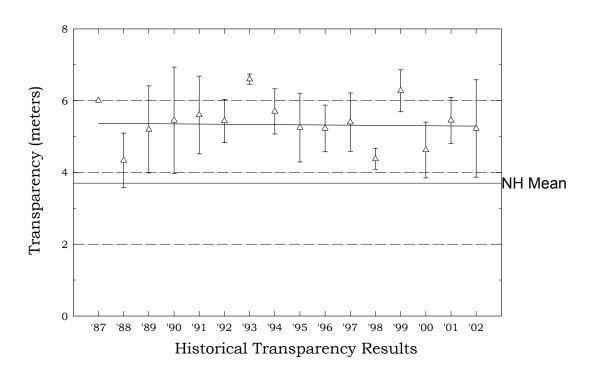
Use of Lakes or Streams for Domestic Water Supply, WD-WSEB-1-11, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/ws/ws-1-11.htm

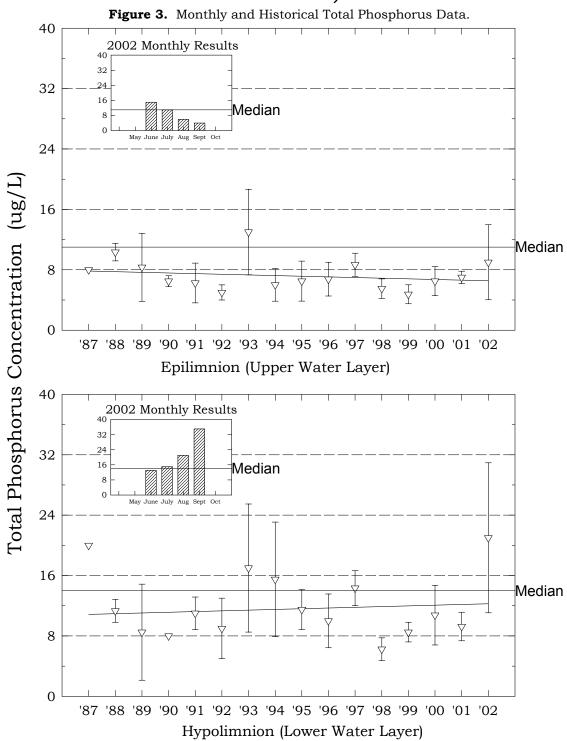

Water Milfoil, WD-BB-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-1.htm


Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, WD-BB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-4.htm

Appendix A: Graphs


Pine River Pond, Wakefield


Figure 1. Monthly and Historical Chlorophyll-a Results



Pine River Pond, Wakefield

Pine River Pond, Wakefield

